Electric Motors ############### Electric Motor Base Class ************************* .. autoclass:: gym_electric_motor.physical_systems.electric_motors.ElectricMotor :members: Synchronous Motors ****************** Parameter Dictionary '''''''''''''''''''' +------------------+------------------------------------------------+---------------------+ | **Key** | **Description** | **Default** | +==================+================================================+=====================+ | r_s | Stator Resistance in Ohm | 4.9 | +------------------+------------------------------------------------+---------------------+ | l_d | d-axis inductance in Henry | 79e-3 | +------------------+------------------------------------------------+---------------------+ | l_q | q-axis inductance in Henry | 113e-3 | +------------------+------------------------------------------------+---------------------+ | j_rotor | Moment of inertia of the rotor | 2.45e-3 | +------------------+------------------------------------------------+---------------------+ | psi_p | Permanent linked rotor flux | 0.165 | +------------------+------------------------------------------------+---------------------+ | p | Pole pair Number | 2 | +------------------+------------------------------------------------+---------------------+ All nominal voltages and currents are peak phase values. Therefore, data sheet values for line voltages and phase currents has to be transformed such that :math:`U_N=\sqrt(2/3) U_L` and :math:`I_N=\sqrt(2) I_S`. Furthermore, the angular velocity is the electrical one and not the mechanical one :math:`\omega = p \omega_{me}`. .. autoclass:: gym_electric_motor.physical_systems.electric_motors.SynchronousMotor :members: Synchronous Reluctance Motor **************************** .. autoclass:: gym_electric_motor.physical_systems.electric_motors.SynchronousReluctanceMotor :members: Permanent Magnet Synchronous Motor ********************************** The PMSM is a three phase motor with a permanent magnet in the rotor as shown in the figure [Boecker2018b]_. The input of this motor are the voltages :math:`u_a`, :math:`u_b` and :math:`u_c`. The quantities are: - :math:`u_a`, :math:`u_b`, :math:`u_c` phase voltages - :math:`i_a`, :math:`i_b`, :math:`i_c` phase currents - :math:`R_s` stator resistance - :math:`L_d` d-axis inductance - :math:`L_q` q-axis inductance - :math:`i_{sd}` d-axis current - :math:`i_{sq}` q-axis current - :math:`u_{sd}` d-axis voltage - :math:`u_{sq}` q-axis voltage - :math:`p` pole pair number - :math:`\mathit{\Psi}_p` permanent linked rotor flux - :math:`\epsilon` rotor position angle - :math:`\omega` (electrical) angular velocity - :math:`\omega_{me}` mechanical angular velocity - :math:`T` Torque produced by the motor - :math:`T_L` Torque from the load - :math:`J` moment of inertia The electrical angular velocity and the mechanical angular velocity are related such that :math:`\omega=\omega_{me} p`. .. figure:: ../../plots/GDAFig29.svg The circuit diagram of the phases are similar to each other and the armature circuit of the externally excited motor. .. figure:: ../../plots/pmsmMotorB6.png For an easy computation the three phases are first transformed to the quantities :math:`\alpha` and :math:`\beta` and afterwards to :math:`d/q` coordinates that rotated with the rotor as given in [Boecker2018b]_. .. figure:: ../../plots/ESBdq.svg This results in the equations: :math:`u_{sd}=R_s i_{sd}+L_d \frac{\mathrm{d} i_{sd}}{\mathrm{d} t}-\omega_{me}p L_q i_{sq}` :math:`u_{sq}=R_s i_{sq}+L_q \frac{\mathrm{d} i_{sq}}{\mathrm{d} t}+\omega_{me}p L_d i_{sd}+\omega_{me}p \mathit{\Psi}_p` :math:`\frac{\mathrm{d} \omega_{me}}{\mathrm{d} t}=\frac{T-T_L(\omega_{me})}{J}` :math:`T=\frac{3}{2} p (\mathit{\Psi}_p +(L_d-L_q)i_{sd}) i_{sq}` A more detailed derivation can be found in [Modeling and High-Performance Control of Electric Machines, John Chiasson (2005)] The difference between rms and peak values and between line and phase quantities has to be considered at the PMSM. The PMSM is in star conncetion and the line voltage :math:`U_L` is mostly given in data sheets as rms value. In the toolbox the nominal value of the phase voltage :math:`\hat{U}_S=\sqrt{\frac{2}{3}}U_L` is needed. Furthermore, the supply voltage is typically the same :math:`u_{sup}=\hat{U}_S`. For example, a line voltage of :math:`U_L=400~\text{V}` is given, the rms phase voltage is :math:`U_S=\sqrt{\frac{1}{3}}U_L = 230.9 \text{ V}` and the peak value :math:`\hat{U}_S=326.6 \text{ V}`. The nominal peak current of a phase is given by :math:`\hat{I}_S=\sqrt{2} I_S`. .. figure:: ../../plots/Drehstromtrafo.svg .. autoclass:: gym_electric_motor.physical_systems.electric_motors.PermanentMagnetSynchronousMotor :members: References ########## .. [Boecker2018a] Böcker, Joachim; Elektrische Antriebstechnik; 2018; Paderborn University .. [Boecker2018b] Böcker, Joachim; Controlled Three-Phase Drives; 2018; Paderborn University .. [Chiasson2005] Chiasson, John; Modeling and High-Performance Control of Electric Machines; 2005; Hoboken, NJ, USA